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Abstract: The brain structure can be modelled as a deep recurrent complex neuronal network. Networked systems
are expressly interesting systems to control because of the role of the underlying architecture, which predisposes
some components to particular control motions. The concept of brain cognitive control is analogous to the mathe-
matical concept of control used in engineering, where the state of a complex system can be adjusted by a particular
input. The in-depth study on the controllability character of dynamical systems, despite being very difficult, could
help to regulate the brain cognitive function. small advances in the study can favour the study and action against
learning difficulties such as dyscalculia or other disturbances like the phenomena of forgetting.
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1 Introduction
Brain networks have become a productive field of re-
search so-called or network neuroscience, covering
across different areas, from interacting biomolecules
all the way to social behavior. A significant driving
force has been the use of mathematical tools to neu-
robiological systems, especially models and measures
of graph theory and dynamical networks systems the-
ory [20].

A complex dynamical network consists of a large
set of interconnected nodes, with each node being a
fundamental unit with detailed contents. More specif-
ically, an artificial neural network (ANN) is a compu-
tational model that is loosely inspired by the human
brain consisting of an interconnected network of sim-
ple processing units that can learn from experience by
modifying its connections.

Figure 1: Neural Network.

The neuronal network locution refers to a particu-
lar mathematical model for understanding brain func-
tion, in which neurons are the basic computational
units, and the calculation interprets network interac-
tions.

The mathematical models of neural networks, as
Kriegeskorte says in [14], are the starting point of
a new vision of neuroscience, the so-called compu-
tational neuroscience, which allows us to deal with
real-world tasks that require extensive knowledge and
complex computations.

Neural systems allow humans to make multiple
complex mental processes that permit to make any
task necessary for daily life. This kind of systems has
the ability to alter their dynamics to meet the demands
of the subject in the processes of reception, selection,
transformation, storage, processing and retrieval of in-
formation. This ability is called control of neural sys-
tems.

Brain cognitive control is one of several classes of
cognitive processes that are essential to good human
functioning. This concept, understood as that capacity
that regulates our behavior and that allows us to se-
lect the information that is necessary for our objective
and inhibit irrelevant information is analogous to the
mathematical concept of control of the dynamic sys-
tems used in engineering, where the state of a complex
system can be modulated by the input of energy.

Neural network systems, such as the brain, are
very attractive systems for the study of control due
to their structure that predisposes certain components
to specific control actions. The neuronal sets of the
brain can be interpreted as the nodes of a complex
system and the anatomical cables of interconnection
as the axes, this system exerts an impact on the neural
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function. It is therefore plausible that the brain regu-
lates cognitive function through a process of transient
network level control similar to technological systems
modelled mathematically as complex systems. Al-
though the complete understanding of the relationship
between mathematical control measures and the no-
tions of cognitive control of neuroscience are difficult
to achieve, small advances in the study can favour the
study and action against learning difficulties such as
dyscalculia or other disturbances like the phenomena
of forgetting, ([9], [10]).

Figure 2: Brain network.

In these recent years, the study of the control of
complex networks with linear dynamics has gained
importance in both science and engineering. Control-
lability of a dynamical system has being largely stud-
ied by several authors and under many different points
of view, (see [1], [2], [3], [5], [8], [12], [15] and [19],
for example). Between different aspects in which we
can study the controllability we have the notion of
structural controllability that has been proposed by
Lin [17] as a framework for studying the controlla-
bility properties of directed complex networks where
the dynamics of the system is governed by a linear
system: ẋ(t) = Ax(t) + Bu(t) usually the matrix A
of the system is linked to the adjacency matrix of the
network, x(t) is a time dependent vector of the state
variables of the nodes, u(t) is the vector of input sig-
nals, and B which defines how the input signals are
connected to the nodes of the network and it is the
called input matrix. Structurally controllable means
that there exists a matrix Ā in which is not allowed
to contain a non-zero entry when the corresponding
entry in A is zero such that the network can be driven
from any initial state to any final state by appropriately
choosing the input signals u(t). Recent studies over
the structural controllability can be found on [18].

Another important aspect of control is the no-
tion exact controllability concept following definition
given in [7], [23]. This concept is based on the
maximum multiplicity to identify the minimum set of
driver nodes required to achieve full control of net-
works with arbitrary structures and link-weight distri-
butions.

In this paper we revise these concepts for multia-
gent neural network.

2 Preliminaries
2.1 Graphs
Mathematical networks are usually referred to as
graphs, and the field concerning its study is called
graph theory.

Roughly speaking, a graph is a set of objects
(called vertices or nodes) that are connected together.
The connections between the vertices are called edges.

Figure 3: A directed graph with 7 vertices and 8 edges.

We consider a graph G = (V, E) of order n with
the set of vertices V = {1, . . . , n} and the set of edges
E = {(i, j) | i, j ∈ V} ⊂ V × V .

Given an edge (i, j) i is called the parent node and
j is called the child node and j is in the neighbor of i,
concretely we define the neighbor of i and we denote
it by Ni to the set Ni = {j ∈ V | (i, j) ∈ E}. In the
case where j = i the edge is called self-loop

The graph is called undirected if verifies that
(i, j) ∈ E if and only if (j, i) ∈ E . The graph is called
connected if there exists a path between any two ver-
tices, otherwise is called disconnected.

Associated to the graph we consider a matrix
A = (aij) (notation: i-row, j-column) called (un-
weighted) adjacency matrix defined as follows, aij =
1 if (i, j) ∈ E , and aij = 0 otherwise.

In a more general case we can consider a
weighted adjacency matrix is A = (aij) with aij 6= 0
if (i, j) ∈ E , and aij = 0 otherwise, in this case the
graph is called weighted graph.

Notice that, if self-loops are not allowed aii = 0.
The graph is called simple if it is unweighted,

undirected and containing no self-loops.

2.1.1 Graph Laplacian
The Laplacian matrix of the simple graph is

L = (lij) =


|Ni| if i = j
−1 if j ∈ Ni

0 otherwise
The Laplacian matrix L of a simple graph is a

positive semi-definite operator.
Given an undirected weighted graph its Laplacian

matrix L is the square matrix of size n defined by L =
D −W ; where W is the weighted adjacency matrix
representing the weights of the edge set E i.e W =
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(aij), and where D = diag (D1, . . . , Dn) with Dj =∑n
i=1 aij , for 1 ≤ j ≤ n,
D1 is the sum all weights of the edges arriving to

the node 1.
Notice that if the graph is simple, i.e. the non-zero

weights are 1 and no contains self-loops, this defini-
tion coincides with the previous one. For a general
graph

Example 1 Let us consider the following deep recur-
rent neural network (4)

Figure 4: Neural Network.

The adjacency matrix corresponding to this graph
is as follows ([6])



0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0

a13 a23 0 0 0 0 0 0 0 0 0
0 0 a34 0 a54 0 0 0 0 0 0
0 0 a35 0 0 a65 0 0 0 0 0
0 0 a36 0 a56 0 0 0 0 0 0
0 0 0 a47 a57 0 0 a87 0 0 0
0 0 0 0 a58 a68 a78 0 0 0 0
0 0 0 0 0 0 a79 a89 0 0 0
0 0 0 0 0 0 a710 0 a910 0 0
0 0 0 0 0 0 a711 a811 0 a1011 0


and the Laplacian matrix is



0 0 0 0
0 0 0 0

−a13 −a23 a13 + a23 0
0 0 −a34 a34 + a54
0 0 −a35 0
0 0 −a36 0
0 0 0 −a47
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

−a54 0 0 0
a35 + a65 −a65 0 0

−a56 a36 + a56 0 0
−a57 0 a47 + a57 + a87 −a87
−a58 −a68 −a78 a58 + a68 + a78

0 0 −a79 −a89
0 0 −a710 0
0 0 −a711 −a811

0 0 0
0 0 0
0 0 0
0 0 0
0 0 0
0 0 0
0 0 0
0 0 0

a79 + a89 0 0
−a910 a710 + a910 0

0 −a1011 a711 + a811 + a1011



For more details about graph theory see [22].
A possible way to study the control of neural net-

works can be by associating a dynamic system, in the
form:

ẋ(t) = Ax(t) +Bu(t) (1)

where
x =

(
x1 . . . xn

)t
stands for the states nodes,

A = (aij) is the adjacency matrix to a subgraph
where aij represents the weight of a directed link
from node i to j, u is the vector of m controllers:

u =
(
u1, . . . , um

)t
andB is the n×m control matrix.

Example 2 Let us consider the following graph 5

Figure 5: Graph.

The matrices A and B defining the system ẋ(t) =
Ax(t) +Bu(t) associated to this graph are

A =

 0 0 a1
a2 0 0
0 a3 0

 , B =

 0
a4
0

 . (2)

The subgraph corresponding to the matrix A is:

Figure 6: Graph.

Example 3 Let us consider the graph corresponding
to the recurrent neural network in figure (4). It is pos-
sible to associate it a linear control system ẋ(t) =
Ax(t) +Bu(t) with

A =



0 0 0 0 0 0 0 0 0
a34 0 a54 0 0 0 0 0 0
a35 0 0 a65 0 0 0 0 0
a36 0 a56 0 0 0 0 0 0
0 a47 a57 0 0 a87 0 0 0
0 0 a58 a68 a78 0 0 0 0
0 0 0 0 a79 a89 0 0 0
0 0 0 0 a710 0 a910 0 0
0 0 0 0 a711 a811 0 a1011 0


,
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and

B =



a13 a23
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0


Notice that the graph corresponding to the system

ẋ(t) = Ax(t) +Bu(t) there is no arc pointing toward
any of them vertices with labels n+1 to n+m, since
the matrix

(
A B

)
only has n rows.

2.2 Control concepts for dynamical systems
2.2.1 Controllability

Controllability is one of the most important proper-
ties of dynamical systems. A system is controllable
if we can drive the state variables from any initial to
any desired values within a finite period of time with
properly selected inputs, more concretely:

Definition 4 The system 1 is called controllable if,
for any t1 > 0, x(0) ∈ ICn and w ∈ ICn, there ex-
ists a control input u(t) sufficiently smooth such that
x(t1) = w.

The controllability character can be computed by
means of the well-known Kalman’s rank condition

The system 1 is controllable if and only if:

Proposition 5 ([13])

rank
(
B AB . . . An−1B

)
= n (3)

or by means the Hautus Test for controllability of lin-
ear dynamical systems.

Proposition 6 ([11])

rank
(
sI −A B

)
= n, ∀s ∈ IC. (4)

To ensure controllability with a minimal number
of inputs the brute force approach should generate
2N − 1 configurations of the B matrix [16]. To solve
this challenging task, Y. Y. Liu et al. proposed the
maximum matching algorithm based on the network
representation of the A matrix to select the control1
and observer2 nodes that ensure controllable and ob-
servable systems.

2.2.2 Structural controllability
We recall now the concept of structural
controllability[17]. Structural controllability is a
generalization of the controllability concept. It is
of great interest because many times we know the
entries of the matrices only approximately. Roughly
speaking, a linear system is said to be structurally
controllable if one can find a set of values for the pa-
rameters in the matrices such that the corresponding
system is controllable. More concretely, the definition
is as follows.

Definition 7 The linear system 1 is structurally con-
trollable if and only if ∀ε > 0, there exists a com-
pletely controllable linear system ẋ(t) = Ax(t) +
Bu(t), of the same structure as ẋ(t) = Ax(t)+Bu(t)
such that ‖A−A‖ < ε and ‖B −B‖ < ε.

Recall that, a linear dynamic system ẋ(t) =
Ax(t)+Bu(t) has the same structure as another linear
dynamical system ẋ(t) = Ax(t)+Bu(t), of the same
dimensions, if for every fixed zero entry of the pair of
matrices (A,B), the corresponding entry of the pair
of matrices (A,B) is fixed zero and vice versa.

In the case where B ∈ Mn×1 we have that if
ẋ(t) = Ax(t) + Bu(t) is structurally controllable,
then almost every real ẋ(t) = Ax(t)+Bu(t) with the
same pattern of zero entries as ẋ(t) = Ax(t) +Bu(t)
will be controllable. It suffices to observe that chang-
ing the non-zero entries in the system ẋ(t) = Ax(t)+
Bu(t) for parameters (one parameter for each entry)
we obtain a family of systems ẋ(t) = A(λ)x(t) +
B(λ)u(t)of which the non-controllable ones are the
systems whose parameters are solution of the equation
det

(
B(λ) A(λ)B(λ) . . . An−1(λ)B(λ)

)
= 0,

the complementary set is a dense open set of the pa-
rameters space.

Example 8 Let us consider the linear system 2 in ex-
ample 2

This system is clearly controllable because of

det
(
B AB A2B

)
=

det

 0 0 a1a3a4
a4 0 0
0 a3a4 0

 = a1a
2
3a

3
4 6= 0

All collection of the same structure systems in a
neighborhood B(ε) with ε = (ε1, ε2, ε3, ε4), |εi| <
|ai|, i = 1, 3, 4

det

(
0 0 (a1+ε1)(a3 + ε3)(a4 + ε4)

(a4 + ε4) 0 0
0 (a3 + ε3)(a4 + ε4) 0

)
=

(a1 + ε1))(a3 + ε3)2(a4 + ε4))3 6= 0
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Example 9 Let us consider now, the system corre-
sponding to example 3, in this case if the weights
aij = 1 for all i, j, we have that the system is not
controllable because of

rank
(
B AB A2B . . . A8B

)
= 6

But considering aij = 1 + εij the depending of
paramters system is controllable

rank
(
B AB A2B . . . A8B

)
= 9

So, the system weights aij = 1 for all i, j is struc-
turally stable.

2.2.3 Exact controllability
Given a state space representation of a homogeneous
linear dynamical system ẋ(t) = Ax(t) we can ask if
it is possible add a control obtaining an equation as in
equation 1, and if it is possible to obtain a good control
in other to make the system controllable. That has
interest when the solution of the homogeneous system
is unstable.

Example 10 Let us consider the homogeneous sys-
tem corresponding tho following un-weighted graph
7

Figure 7: Un-weighted graph.

The matrix of the system is

A =



0 0 0 0 0 0 0 0 0
1 0 1 0 0 0 0 0 0
1 0 0 1 0 0 0 0 0
1 0 1 0 0 0 0 0 0
0 1 1 0 0 1 0 0 0
0 0 1 1 1 0 0 0 0
0 0 0 0 1 1 0 0 0
0 0 0 0 1 0 1 0 0
0 0 0 0 1 1 0 1 0


The eigenvalues are: 0, 0, 0, 0, 0 1, 1, -1, -1, so,

the system is not stable.
We ask for and external node acting over one or

more than one we can obtain a system controllable,
and as consequence we can chose stable solutions.

Taking, for example, as B, the matrix

B =



1 0
0 1
0 0
1 0
0 1
0 1
0 1
0 1
1 1


the system ẋ(t) = Ax(t) is controllable.

It is well known that There are many possible con-
trol matricesB in the system 1 that satisfy the control-
lability condition.

The goal is to find the set of all possible matri-
ces B, having the minimum number of columns cor-
responding to the minimum number nD(A) of inde-
pendent controllers required to control the whole net-
work.

Definition 11 LetA be a matrix. The exact controlla-
bility nD(A) is the minimum of the rank of all possible
matrices B making the system 1 controllable.

nD(A) =
min {rankB, ∀B ∈Mn×i 1 ≤ i ≤ n (A,B)

controllable}.

If confusion is not possible we will write simply nD.
It is straightforward that nD is invariant under

similarity, that is to say: for any invertible matrix S
we have nD(A) = nD(S−1AS). As a consequence,
if necessary we can consider A in its canonical Jordan
form.

Example 12 If A = diag(λ1, . . . , λn) with λi 6= λj
for all i 6= j, then nD = 1, (it suffices to take B =
(1 . . . 1)t).

Remark 13 Not every matrix B having nD columns
is valid to make the system controllable. For example
if A = diag(1, 2, 3) and B = (1, 0, 0)t, the system
(A,B) is not controllable, (rank

(
B AB A2B

)
=

1 < 3, or equivalently rank
(
A− λI B

)
= 2 for

λ = 2, 3. Observe that, in this case, the matrix B
corresponds to an eigenvector of the operator A.

Proposition 14 ([23])

nD = maxi {µ(λi)}

where µ(λi) = dim Ker (A − λiI) is the geometric
multiplicity of the eigenvalue λi.
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Remark 15 Following example 10, computing the
ranks

rank (A− I) = 8
rank (A+ I) = 7
rank (A) = 7

we deduce that minimum number of columns in matrix
B making the system controllable is two.

3 Controllability of multiagent neu-
ral networks

The complexity of the brain drives that in order to
study control problems, the global model is divided
into several local submodels, each with its complex
and interrelated network structure. Structuring, in this
way, the brain as a neuronal multi-network with a
common goal.

Let us consider a group of k agents. The dynamic
of each agent is given by the following linear dynam-
ical systems

ẋ1(t) = A1x
1(t) +B1u

1(t)
...

ẋk(t) = Akx
k(t) +Bku

k(t)

(5)

Ai ∈Mn(IR), Bi ∈Mn×m(IR), xi(t) ∈ IRn, ui(t) ∈
IRm, 1 ≤ i ≤ k.

We consider the undirected graph G with

i) Vertex set: V = {1, . . . , k}

ii) Edge set: E = {(i, j) | i, j ∈ V } ⊂ V × V

defining the communication topology among agents.
Writing

X (t) =

x
1(t)
...

xk(t)

 , Ẋ (t) =

ẋ
1(t)
...

ẋk(t)

 ,

U(t) =

u
1(t)
...

uk(t)

 ,

A =

A1

. . .
Ak

 , B =

B1

. . .
Bk

 ,
Following this notation we can describe the mul-

tisystem as a system:

Ẋ (t) = AX (t) + BU(t).

and we are interested in take the output of the system
to a reference value and keep it there, we can ensure
that if the system is controllable. Clearly, this system
is controllable if and only if each subsystem is con-
trollable, and, in this case, there exist a feedback in
which we obtain the desired solution.

But, in our case, not all possible feedbacks are
available due the restriction of interconnection of
agents. So we are interested in a feedbacksKi in such
a way that the with control

ui(t) = Ki

∑
j∈Ni

(xi(t)− xj(t)), 1 ≤ i ≤ k (6)

the system has prescribed eigenvalues in order to take
a desired output of the system.

In our particular setup, we are interested in a so-
lution such that

lim
t→∞
‖xi − xj‖ = 0, 1 ≤ i, j ≤ k.

That is to say, founding solutions of each subsystem
arriving all, to the same point.

Proposition 16 Taking the control ui(t) =
K
∑

j∈Ni
(xi(t) − xj(t)), 1 ≤ i ≤ k the closed-loop

system can be described as

Ẋ (t) = (A+ BK(L ⊗ In))X (t).

where K =

K1

. . .
Kk

.

Computing the matrixA+BK(L⊗In) we obtain


A1 + l11B1K1 l12B1K1 . . . l1kB1K1

l21B2K2 A2 + l22B2K2 . . . l2kB2K2
...

...
. . .

...
lk1BkKk lk2BkKk . . . Ak + lkkBkKk


Example 17 We consider 3 agents with the following
dynamics of each agent

ẋ1 = A1x
1 +B1u

1

ẋ2 = A2x
2 +B2u

2

ẋ3 = A3x
3 +B3u

3
(7)

with A1 = A2 = A3 =

(
0 1
−0.1 −0.5

)
, and B1 =

B2 = B3 =

(
0
1

)
.

The communication topology is defined by the
graph (V, E):
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V = {1, 2, 3}
E = {(i, j) | i, j ∈ V } = {(1, 2), (1, 3),

(2, 1), (3, 1)} ⊂ V × V
The neighbors of the parent nodes are N1 =

{2, 3}, N2 = {1}, N3 = {1}.

Figure 8: Multiagent graph

The Laplacian matrix of the graph is

L =

 2 −1 −1
−1 1 0
−1 0 1


Taking Ki = K =

(
k `

)
, for i = 1, 2, 3

The matrixM of the system is


0 1 0 0 0 0

2k − 1
10 2`− 1

2 −k −` −k −`
0 0 0 1 0 0
−k −` k − 1

10 `− 1
2 0 0

0 0 0 0 0 1
−k −` 0 0 k − 1

10 `− 1
2


Taking K =

(
−0.5 −0.2

)
the eigenvalues are

−0.5500 + 1.1391i, −0.5500 − 1.1391i, −0.2500 +
0.1936i, −0.2500 − 0.1936i, −0.3500 + 0.6910i,
−0.3500−0.6910i, then the system has a stable solu-
tion and the the three trajectories arrive at a common
point.

As we can see in the example, all agents on the
multi-agent system, have an identical linear dynamic
mode, and in this case, we can consider the same feed-
back for each system.

In this particular case proposition 16 can be
rewritten in the following manner (see [4], [21])

Proposition 18 Taking the control ui(t) =
K
∑

j∈Ni
(xi(t) − xj(t)), 1 ≤ i ≤ k the closed-loop

system for a multiagents having identical linear
dynamical mode, can be described as

Ẋ = ((Ik ⊗A) + (Ik ⊗BK)(L ⊗ In))X .

3.0.1 Structural Controllability of Multi-Agent
Systems with Fixed Topology

Let us consider a group of k agents. The dynamic of
each agent is given by the linear dynamical systems as
5 with external control inputs, that is to say

ẋ1(t) = A1x
1(t) +B1u

1(t) +Diu
1
ext(t)

...
ẋk(t) = Akx

k(t) +Bku
k(t) +Dku

k
ext(t)

(8)

Ai ∈ Mn(IR), Bi ∈ Mn×m(IR), Di ∈ Mn×p(IR),
xi(t) ∈ IRn, ui(t) ∈ IRm, uiext(t) ∈ IRp the external
control input of the agent i, 1 ≤ i ≤ k.

Given the following protocol as 6 where K is the
feedback gain matrix, and defining

Uext(t) =

u
1
ext(t)

...
ukext(t)

 , D =

D1

. . .
Dk


Proposition 19 With these notations the system can
be described as

Ẋ (t) = (A+ BK(L ⊗ In))X (t) +DUext(t). (9)

In the particular case where all agents on the multi-
agent system, have an identical linear dynamic mode,
we have the following corollary

Corollary 20 For the case where all agents on the
multi-agent system, have an identical linear dynamic
mode, the system can be described as

Ẋ = ((Ik⊗A) + (Ik⊗BK)(L⊗ In))X +DUext(t).

The expression of the multi-agent system as a lin-
ear system permit us to adapt the structural controlla-
bility concept to the multi-agent system.

Definition 21 The multi-agent system 9 is said to be
structurally controllable if one can change the non-
zero entries of (A+BK(L⊗In)),D) for some partic-
ular values from IR such that system 9 is controllable
in the classical sense.

Example 22 Let us consuder the example 17 with ex-

ternal input matrix D =

(
1
0

)
and k = 0.1 and

l = 0.2
The system is not controllable because of

rank
(
D MD . . . M5D

)
= 5 < 6.
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Changing

M =



0 1 0 0 0 0
0.1 −0.1 −0.1 −0.2 −0.1 −0.2
0 0 0 1 0 0
−0.1 −0.2 0 −0.3 0 0

0 0 0 0 0 1
−0.1 −0.2 0 0 0 −0.3


by

M =



0 1 0 0 0 0
−0.1 −0.2 0.1 −0.2 −0.1 −0.2

0 0 0 1 0 0
−0.1 −0.2 0 0.3 0 0

0 0 0 0 0 1
−0.1 −0.2 0 0 0 −0.3


the new system is controllable, because of
rank

(
D MD . . . M5D

)
= 6.

3.0.2 Exact controllability
Following [6], let us consider a group of k agents. The
dynamic of each agent is given by the following ho-
mogeneous linear dynamical systems

ẋ1(t) = A1x
1(t)

...
ẋk(t) = Akx

k(t)

(10)

xi(t) ∈ IRn, 1 ≤ i ≤ k.
We ask for minimum number of columns that a

matrix B must have for the system

ẋ1(t) = A1x
1(t) +Bu1(t)

...
ẋk(t) = Akx

k(t) +Buk(t)

(11)

to be controllable (the matrix B the same for aech
agent).

Let λi1 , . . . , λiri the eigenvalues of the matrix Ai

with geometrical multiplicities µ(λi1), . . . , µ(λiri ).
Then

Proposition 23

nD(A) =
max(µ(λ11), . . . , µ(λ1r1 ), . . . , µ(λk1), . . . , µ(λkrk )

Corollary 24

nD(A) = nD(Ai)

for some i = 1, . . . , k.

Remark 25 - Not all matrices B having nD(Ai)
columns and making the system ẋi = Aix

i +
Bui controllable are available for the multiagent
system.

- Taking all possible matricesB making the system
controllable we can consider the existence of the
matrix K.

Example 26 Suppose A1 =

(
2

3

)
, A2 =

(
1

1

)
.

The matrix B =

(
1
1

)
make the system ẋ(t) =

A1x(t)+Bu(t) controllable but not ẋ(t) = A2x(t)+
Bu(t).

The matrix B =

(
1
0

)
make the system ẋ(t) =

A2x(t)+Bu(t) controllable but not ẋ(t) = A1x(t)+
Bu(t).

Nevertheless, the matrixB =

(
1
2

)
make both sys-

tems controllable.

Introducing topology relating the system, the ex-
act controllability is formulated as follows.

Definition 27 The system 5 with topology 6 is exact
controllable, if there exist external inputs D, making
the system 8 controllable.

Example 28 The system given in example 17 withe
the same values for k and ` is exact controllable, it

suffices to consider D =

(
0
1

)
.

4 Conclusions
Different aspects of controllability for multi-agent
systems where all agents have an identical linear dy-
namic mode are analyzed, concretively aspects about
structural controllability and exact controllability.
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